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Introduction:
Computer aided design (CAD) and digital  tools have tremendously influenced creation  
processes in many fields, including architecture.

L-system is a mathematical system, created to model biological and natural structures,  
such as tree branches, cristal forming, moss growth, aluvial fans, and more (Rozenberg  
and Salomaa, 1980). L-systems are generation based models, based on simple rules of  
replacement.  A basic  increment,  such  as  a  line  segment,  is  replaced  by  a  simple  
structure, which is composed of one or more basic increments from the same kind or from  
other kinds. In turn, those increments are replaced as well, each one according to a basic  
rule that applies to it. This iterations of replacement can continue on and on, and thus  
creating complex two dimensional structures.

Like  other  CAD concepts  and  digital  tools,  L-system was  also  used  as  a  source  of  
inspiration in architecture (Aranda and Lach, 2004). However, since the structures created  
by  L-systems  are  two  dimensional,  they  couldn't  have  been  more  then  conceptual  
inspiration for architecture, which is by nature, three dimensional.

In this work we examine the possibilities of expending the L-systems mechanism to create  
three dimensional structures, that can be used as actual architectural concepts.



Methods (digital):
In order to define L-system-like manipulations which result in three dimensional structures,  
a new generation based system was created, hereinafter The three dimensional 'L-system'  
(3DL).

Objects  in  3DL  are  3  dimensional  bodies,  usually  represented  by  sets  of  vertices.  
Therefore,  replacement  rules  in  3DL,  are  geometric  functions.  Such  a  function  would  
receive a single set of vertices, and return several sets of vertices.
A set of such 3DL functions together with a set of initial 3DL objects (a 3DL instance) could  
be iterated any number of generations.
The 3D applications were written in  the Python programming language (Python 2.61),  
along with the VPython rendering library.

The Python code we wrote handles the 3DL objects and functions as described, in order to  
compute  3DL  instances  in  any  order  (generation).  Such  a  3DL  instance,  for  each  
generation,  is  in  practice  a  set  of  sets  of  vertices  in  space,  and  has  no  visual  
representation. The VPython code renders the instance into a 3DL structure, which is a  
visual 3D representation of it.

Functioning code for a Koch 3DL instance is presented in Figure 1 and pseudo-code for  
the Levy 3DL instance in figure 2.

from visual import *

def StartingElements():
    a = 100*vector(sin(0/3.*2*pi),0,cos(0/3.*2*pi))
    b = 100*vector(sin(2/3.*2*pi),0,cos(2/3.*2*pi))
    c = 100*vector(sin(1/3.*2*pi),0,cos(1/3.*2*pi))
    return [[a,b,c]]

def NextVertices(i):
    ta = []
    for k in range(3):
        ta.append(i[k])
        ta.append((i[k]+i[(k+1)%3])*0.5)
    normal = norm(cross(i[2]-i[0],i[1]-i[0]))*(i[0]-
i[1]).mag/2*sqrt(6)/3 *0.6
    ta.append(normal + (i[0]+i[1]+i[2])/3)
    return ta

def ReplaceWith(ta):
    tempa = []
    tempa.append((ta[0],ta[1],ta[5]))
    tempa.append((ta[2],ta[3],ta[1]))
    tempa.append((ta[4],ta[5],ta[3]))
    tempa.append((ta[6],ta[5],ta[1]))
    tempa.append((ta[6],ta[1],ta[3]))
    tempa.append((ta[6],ta[3],ta[5]))
    return tempa
maxgen = 5

################################

scene = display(title='kochpyr', width=800, height=800,  
forward=(-2,-2,-2))
sun = distant_light(direction=(2,4,2), color=(0.4,0.2,0.2))
lamp = local_light(pos=(200,200,200), color=(0.6,0.4,0.2))

g = [StartingElements()]

for _ in range(maxgen):
    g.append([])
    for i in g[-2]:
        ta = NextVertices(i)
        g[-1] += ReplaceWith(ta)

surface = []
for j in range(maxgen):
    surface.append([])
    for i in g[j]:
        surface[-1].append(convex(pos = i,
                                  material=materials.plastic,

                                  color=(0.7,)*3,
                                  visible=(len(surface)==1)))

gen = 0
while True:
    rate(60)
    if scene.mouse.clicked:
        m = scene.mouse.getclick()
        d = 1-2*(scene.mouse.ctrl == True)
        gen = min(max(0,gen+d),maxgen-1)
        for j in range(maxgen):
            for i in surface[j]:
                i.visible = j==gen
#

Figure 1: Functioning code of the Koch 3DL instances of generations 0 to 5.



##Pseudo-code for the 3DL Levy instance.

#'replacement_fucntion' is the 3DL replacement rule. It receives 
#one 3DL object, and calculates and returns the several 3DL objects
#resulting from it:

def replacement_function([a,b,c]):
#A new vertex is calculated from the initial vertices:
normal = (a+b+c)/3 + cross(a,b) * |a|/2
#New combinations of the initial vertices and the new vertex
#define new objects, which are returned to the next generation.
return [

[a,b,normal],
[b,c,normal],
[c,a,normal]
]

#generation[0] is the first (zero) generation of the instance, 
#which contains only the initial 3DL objects. In this case, 
#generation[0] contains only one object - a triangle, defined by 
#its 3 vertices, a, b and c, which are defined by their coordinates
#in 3D space.

genaration[0] = [[
    a = (  0, 0, 100)
    b = (-86, 0, -50)
    c = ( 86, 0, -50)

]]

#Each generation is generated from the previous one, until the 
#desired generation is reached:

for generation_number in [1,2,3,..,n]:
#Each item in the previous generation is passed through
#'replacement function', and the result is added to the
#generation which is currently generated.
for item in generation[generation_number-1]:

generation[generation_number] += replacement_function(item)

#Once the desired generation has been computed, it can be rendered
#and visualized:

Render generation[n]

Figure 2: Pseudocode for the Levy 3DL instances.



Results:
DDNET orientation
Mapping the present work on the DDNET, we describe the key concept of the project as  
Morphogenesis  and  emergence.  Generation  rule  based  models  are  the  computational  
designed  models  (implemented  in  Python)  in  order  to  combine  the  technologies  and  
techniques of L-sys and 3D modeling to create the 3DL (figure 3).

Figure 3: The DDNET hierarchy for the 3DL system.

3DL structures
Our first example will be one that shows how the 3DL mechanism is an expansion of the  
classic L-system mechanism.
The Koch curve is created through the L-system by a simple replacement rule, as shown  
in figure 4A. The replacement rule is defined by dividing a line segment into three equal  
parts and replacing the middle part with two new segments of equal length, each having  
one vertex at an end of the missing middle part, and both meeting at their other ends. In  
an analog way, we defined the 3DL Koch instance. In order to do that,  (define a 3DL  
instance),  we  define  the  initial  3DL object  to  be  an  equilateral  triangle,  and  the  3DL  
function as such: we'll divide the triangle into four triangle by connecting the 3 midpoints of  
the edges, add a tetrahedron which base is the central triangle, and remove that triangle  
that  is  its  base (figure 4B).  Once the replacement rule  is  defined,  we can iterate  the  
function as many generations as we desire. Generations 0, 1, 2 and 3, of the 3DL Koch  
instance are illustrated in figure 4C-F.



Figure 4: A: The L-system Koch replacement rule. B: A 3DL Koch replacement rule. C: Generation 0 of 3DL  
Koch instance. D: Generation 1 of 3DL Koch instance. E: Generation 2 of 3DL Koch instance. F: Generation  
3 of 3DL Koch instance.

The  progression  from 2D  to  3D  gives  another  degree  of  freedom  in  the  creation  of  
replacement  rules,  and  with  that,  lets  us  create  systems which  are  not  analogous  to  
possible 2D L-systems (figure 5, 6, 7).



Figure 5: Generation 0-3 of a 3DL instance that its 0 generation is a square and the replacement rule is of a  
cube that is located at the central cubic 1/9 of its surface. The complicity is eded by adding an angle that  
deforme the structure toward its center.

Figure 6: Generations 0-5 (A-F respectively) of the 3DL Levy instance, which is analogous in its construction  
to the L-system construction of the Levy curve. The initial object is a triangle, and the replacement function  
replaces it  with three triangles,  each defined by two of  the original  triangle vertices,  and a vertex at  a  
perpendicular direction from the center of the original triangle. Intuitively, this can be seen as if the center of  
the element is being pulled up from the shape, and the rest of the shape stretching accordingly. This view  
shows how the 3DL Levy instance is related to the 2D Levy curve.



Figure 7: Generations 0-4 of a 3DL instance which is created from a square as its initial object, and  
a replacement rule which adds another parallel square which is raised and slightly tilted on the Y  
axis, and two pseudo-squares which connect, or ‘close’ two parallel sides of the lower and upper  
squares. Since each such pseudo-square contains four vertices which does not lay on the same  
plane, the element they define is a polyhedron. Since the replacement function is mathematically  
and  algorithmically  defined,  it  is  tolerant  to  changes  in  the  input,  and  can  generate  the  next  
generation even though it was defined to manipulate a base element which is a square.



Discussion
The 3DL-system presented in  this  work  is  a  new application  which  resulted  from the  
combination of  the L-system mechanism with  a 3D modeling and rendering tool.  This  
application extends the conceptual domain and enables modeling and rendering structures  
that are impossible to create without it. We developed the ability to calculate and render  
three dimensional fractalic structures. The initial object and the replacement rule may vary  
according to the circumstances. The ability to define different terms for the development of  
the structure is what makes the 3DL-sys an applicable tool for planning and calculating  
structures.
It  is important to understand that the work we present goes beyond extending the two  
dimensional mechanism of the L-sys to the three dimensional one of the 3DL, but also  
uses  the  L-sys  which  was  originally  generated  to  model  natural  phenomena's  as  an  
inspiration  for  a  system  that  not  only  model,  but  also  generate  new  structures.  The  
structures that are generated by the 3DL-sys are inspired by nature but are also able to  
include  artificial  variables.  As  so,  Structural  stability  and  strain  of  materials  can  be  
calculated and angels or length of plains may be dictated according to building materials,  
uses of the structure, climate, lots' limitations or any other limitation needed.

Conclusion
 L-system's mechanism was translated to a 3D system (3DL).
 A modeling and rendering technique was developed and demonstrated.
 The 3DL system was proven as a generating system (in appose to modeling).
 Future uses and the potential of the new system in generating structures according to  

initial needs and limitation were explained.
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